1 SUPPLEMENTARY INFORMATION

2	The asymmetric impacts of feeding China's monogastric livestock
3	with food waste on food security and environment sustainability
4	
5	Weitong Long ^{1,2} , Xueqin Zhu ^{1*} , Hans-Peter Weikard ¹ , Oene Oenema ^{2,3} , Yong Hou ^{2*}
6	
7	¹ Environmental Economics and Natural Resources Group, Wageningen University, Hollandseweg
8	1, 6706 KN Wageningen, The Netherlands
9	² State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental
10	Science, China Agricultural University, 100193 Beijing, China
11	³ Wageningen Environmental Research, 6708 PB Wageningen, The Netherlands
12	
13	* Corresponding author at: Wageningen University, 6706 KN Wageningen, The Netherlands; China
14	Agricultural University, 100193, Beijing, China.

15 E-mail addresses: <u>xueqin.zhu@wur.nl</u> (X. Zhu); <u>yonghou@cau.edu.cn</u> (Y. Hou).

16	Contents
17	Supplementary Methods4
18	Objective function4
19	Utility function
20	Production function
21	Balance equations
22	Budget constraint9
23	Model calibration10
24	Supplementary Figures11
25 26 27	Supplementary Fig. 1 Percentage shares (%) for each feed type of changes in feed in (a) dry matter, (b) protein, and (c) energy within total feed use for per kg of monogastric livestock production in scenarios
28	Supplementary Fig. 2 Total feed demand (Tg) by livestock sectors in China in scenarios12
29 30	Supplementary Fig. 3 Percentage changes (%) in prices of factor inputs in China (CN) and China's main food and feed trading partners (MTP) in scenarios with respect to S0
31 32 33	Supplementary Fig. 4 (a) Percentage shares (%) for each crop of changes in total cropland occupation in scenarios. (b) Absolute changes (Tg) in total fertiliser demand by crops in China in scenarios with respect to S0
34 35 36 37 38	Supplementary Fig. 5 Absolute changes (Tg) in China's imports of (a) monogastric livestock, (b) ruminant livestock, (c) cereal grains, (d) oilseeds &pulses, (e) other non-food crops, (f) vegetables & fruits, (g) roots & tubers, and (h) sugar crops. The lengths of orange bars indicate the absolute change in each scenario compared with the previous scenario. The length of the final bar is the value for S215
39	Supplementary Fig. 6 Shares (%) of value-added by sector in Chinese GDP in scenarios16
40 41	Supplementary Fig. 7 Calorie availability per capita per day by food types in China and China's main food and feed trading partners (MTP) in S017
42 43	Supplementary Fig. 8 Decomposition of household income in China and China's main food and feed trading partners (MTP) in S0
44 45 46	Supplementary Fig. 9 Percentage changes (%) in (a) per capita affordability of the current diet, (b) household welfare, (c) wage, and (d) the average price of the current diet in China (CN) and China's main food and feed trading partners (MTP) in scenarios with respect to S0
47 48	Supplementary Fig. 10 Percentage changes (%) in prices by sectors in scenarios with respect to S0
49	Supplementary Tables

50 51	Supplementary Table 1 Physical quantities (Tg) for each product or service in China (CN) and its main food and feed trading partners (MTP) in S0
52 53	Supplementary Table 2 Physical quantities (Tg) of food waste and food processing by- products and their utilisation in the baseline (S0) for China
54 55	Supplementary Table 3 Physical quantities (Tg) of food waste and by-product waste to food waste recycling service and food waste collection service in China in S0
56 57	Supplementary Table 4 Prices of food waste recycling service and food waste collection service in China. ^a
58	Supplementary Table 5 The economic and mass allocation of main and by-products. ^a
59 60 61	Supplementary Table 6 Food availability (kcal capita ⁻¹ day ⁻¹) and the additional number of population (million people) to be fed as the current diet in China (CN) and China's main food and feed trading partners (MTP) in scenarios
62 63 64	Supplementary Table 7 Estimated mean dry matter (DM, %), crude protein (CP, %), and energy (MJ kg DM ⁻)contents of feed sub-groups in China (CN) and its main food and feed trading partners (MTP). ^a
65 66	Supplementary Table 8 Physical quantities of feed demand (Tg) by livestock sectors in China in scenarios
67	Supplementary Table 9 Sectoral aggregation scheme
68 69	Supplementary Table 10 The social accounting matrix in the base year of 2014 for China (million \$). ^a
70 71	Supplementary Table 11 The social accounting matrix in the base year of 2014 for China's main food and feed trading partners (MTP) (million \$). ^a
72 73	Supplementary Table 12 Total emissions of greenhouse gases (Tg CO ₂ equivalents) in China (CN) and its main food and feed trading partners (MTP). ^a
74 75	Supplementary Table 13 Total emissions of acidification pollutants (Tg NH ₃ equivalents) in China (CN) and its main food and feed trading partners (MTP). ^a
76 77	Supplementary Table 14 Total emissions of eutrophication pollutants (Tg N equivalents) in China (CN) and its main food and feed trading partners (MTP). ^a
78	Supplementary References
79	

81 Mathematically, various ways exist to represent applied general equilibrium (AGE) models,

- 82 according to Ginsburgh and Keyzer¹. To identify the optimal solution towards greater sustainability
- and enable the efficient allocation of resources in the economy, we used the welfare format of the
- AGE models for our analysis. In the supplementary information, we specified the model for our
- study by explicitly considering producers, consumers, production goods, consumption goods, and
- 86 intermediate goods. Subsequently, we presented the calibration of our model. Finally, we provided
- supplementary figures and tables, along with the sectoral aggregation scheme, social accounting
 matrices, and emissions data for all the regions in our study.
- 89

90 Supplementary Methods

91 Objective function

92 The objective function "social welfare (W)" is the weighted sum of the log utility (U_i) of all 93 consumers, according to Zhu and Van Ierland².

94

 $W = \max \sum_{i} \alpha_{i} \log U_{i} \tag{1}$

95 where α_i is the Negishi weight of the representative consumer in each region *i* (*i*=China and its 96 main food and feed trading partners (MTP, including Brazil, United States, and Canada)).

97

98 Utility function

99 In our model, the consumer's utility depends on the consumption of rival goods. The utility function 100 is a Cobb-Douglas (C-D) function describing the behaviour of a representative consumer (household 101 to maximise its utility subject to budget constraints) consuming rival goods. The utility function of 102 the consumer in region i is written as:

 $U_i = \prod_s C_{i,s}^{\beta_{i,s}} \tag{2}$

where consumption goods *s* refers to cereal grains, oilseeds & pulses, vegetables & fruits, roots tubers, sugar crops, other non-food crops, monogastric livestock, ruminant livestock, other food, fish, and non-food. $C_{i,s}$ is the consumption of the rival good in region *i*. $\beta_{i,s}$ is the elasticity of utility concerning the consumption of rival good *s* in region *i*, i.e., the expenditure share of consumption good *s* in consumption of rival goods in region *i*, and $\sum_{s} \beta_{i,s} = 1$.

109

110 Production function

We present the production functions of seventeen producers, namely, cereal grains, oilseeds & pulses, vegetables & fruits, roots & tubers, sugar crops, other non-food crops, monogastric livestock, ruminant livestock, compound feed, cereal brans, alcoholic pulps, oil cakes, other food, nitrogen fertiliser, phosphorus fertiliser, fish, and non-food.

115

116 The production function of producer j in region i is specified as:

117
$$Y_{i,j} = A_{i,j} [(KL_{i,j})^{\eta_{1i,j}} (LB_{i,j})^{\eta_{2i,j}} (LD1_{i,j})^{\eta_{3i,j}} (LD2_{i,j})^{\eta_{4i,j}} (NFE_{i,j})^{\eta_{5i,j}} (PFE_{i,j})^{\eta_{6i,j}}$$

118
$$(CER_{i,j})^{\eta_{7i,j}} (OSD_{i,j})^{\eta_{8i,j}} (VF_{i,j})^{\eta_{9i,j}} (RT_{i,j})^{\eta_{10i,j}} (SGR_{i,j})^{\eta_{11i,j}} (OTC_{i,j})^{\eta_{12i,j}}$$

119
$$(COF_{i,j})^{\eta_{13i,j}} (BRAN_{i,j})^{\eta_{14i,j}} (PULP_{i,j})^{\eta_{15i,j}} (CAKE_{i,j})^{\eta_{16i,j}}]^{1-\xi_{i,j}}$$

120
$$[(CERW_{i,j})^{\delta_{1i,j}}(OSDW_{i,j})^{\delta_{2i,j}}(VFW_{i,j})^{\delta_{3i,j}}(RTW_{i,j})^{\delta_{4i,j}}$$

121
$$(BRANW_{i,j})^{\delta_{5i,j}} (PULPW_{i,j})^{\delta_{6i,j}} (CAKEW_{i,j})^{\delta_{7i,j}}]^{\xi_{i,j}}$$

- 122 123

where $Y_{i,j}$ is the production of sector j in region i. $A_{i,j}$ is the technological parameter of the 124 125 production of sector j in region i. $KL_{i,j}$, $LB_{i,j}$, $LD1_{i,j}$ and $LD2_{i,j}$ are capital, labour, cropland, 126 and pasture land inputs for production j in region i, respectively. $NFE_{i,j}$, $PFE_{i,j}$, $CER_{i,j}$, 127 $OSD_{i,j}$, $VF_{i,j}$, $RT_{i,j}$, $SGR_{i,j}$, $OTC_{i,j}$, $COF_{i,j}$, $BRAN_{i,j}$, $PULP_{i,j}$, and $CAKE_{i,j}$ are nitrogen 128 fertiliser, phosphorus fertiliser, cereal grains, oilseeds & pulses, vegetables & fruits, roots & tubers, 129 sugar crops, other non-food crops, compound feed, cereal bran, alcoholic pulp, and oil cake inputs for the production of sector j in region i, respectively. $CERW_{i,j}$, $OSDW_{i,j}$, $VFW_{i,j}$, $RTW_{i,j}$, 130 BRANW_{i,i}, PULPW_{i,i}, and CAKEW_{i,j} are food waste (i.e., cereal grains waste, oilseeds & pulses 131 132 waste, vegetables & fruits waste, roots & tubers waste, cereal bran waste, alcoholic pup waste, and 133 oil cake waste) recycling service as feed input for the production of sector i in region i, 134 respectively. $\xi_{i,j}$ (0< $\xi_{i,j}$ <1) is the cost share of food waste for the production of sector j in region 135 *i*. η_f (f=1, 2, 3, ..., 16) is the cost share of each factor and intermediate input for production, and 136 $\sum_{f=1}^{16} \eta_f = 1$. δ_f (f=1, 2, 3, ..., 7) is the cost share of each food waste input for production, and $\sum_{f=1}^{7} \delta_f = 1.$ 137

138

When emissions are outputs of the production process, the emissions intensities of greenhouse gases (GHGs) ($\varepsilon_{gg,i,j}$, kg CO₂ equivalent USD⁻¹), acidification pollutants ($\varepsilon_{ga,i,j}$, kg NH₃ equivalent USD⁻¹), and eutrophication pollutants (EP, $\varepsilon_{ge,i,j}$, kg N equivalent USD⁻¹) from producer *j* in region *i* are calculated as:

143

144

145

$$\varepsilon_{gg,i,j} = \frac{EM_{gg,i,j}^{+0}}{Y_{i,j}^0} \tag{4}$$

(3)

(7)

$$\varepsilon_{ga,i,j} = \frac{EM_{ga,i,j}^{+0}}{Y_{i,j}^{0}} \tag{5}$$

$$\varepsilon_{ge,i,j} = \frac{EM_{ge,i,j}^{+0}}{Y_{i,j}^0} \tag{6}$$

146 where $EM_{gg,i,j}^{+0}$ is the emissions of GHGs gg (gg=CO₂, CH₄, and N₂O emissions) from producer 147 *j* in region *i* in the base run. $EM_{ga,i,j}^{+0}$ is the emissions of acidification pollutants ga (ga=NH₃, 148 NO_x, and SO₂ emissions) from producer *j* in region *i* in the base run. $EM_{ge,i,j}^{+0}$ is the emissions 149 of eutrophication pollutants ge (ge=N and P losses) from producer *j* in region *i* in the base run. 150 $Y_{i,j}^{0}$ is the production of producer *j* in region *i* in the base run.

151

152 Next, the emissions in different scenarios are calculated by multiplying the current production level 153 by corresponding emission intensities. The total emissions of GHGs, acidification and 154 eutrophication pollutants from all producers in region i are calculated as follows:

155
$$EMG_{i,j}^{+} = \sum_{gg} \varepsilon_{gg,i,j} * Y_{i,j} * Eqv_{gg}$$

156 for emissions of GHGs
$$gg = CO_2$$
, CH₄, and N₂O emissions

158 $EMA_{i,j}^{+} = \sum_{ga} \varepsilon_{ga,i,j} * Y_{i,j} * Eqv_{ga}$

for emissions of acidification pollutants $ga = NH_3$, NO_x, and SO₂ emissions

160 161

 $EME_{i,i}^{+} = \sum_{ge} \varepsilon_{ge,i,j} * Y_{i,j} * Eqv_{ge}$

for emissions of eutrophication pollutants ge = N and P losses

162 163

(9)

(11)

 $(p_{i,sgr})$

(8)

where $EMG_{i,j}^+$, $EMA_{i,j}^+$, and $EME_{i,j}^+$ are the total emissions of GHGs, acidification and eutrophication pollutants from producer *j* in region *i*, respectively. Eqv_{gg} , Eqv_{ga} , and Eqv_{ge} are the GWP, AP, and EP equivalent factors based on Goedkoop, et al.³.

167

168 Balance equations

169 In our applied model, we consider factor inputs (i.e., capital, labour, and land) to be mobile between 170 different sectors but immobile between China and MTP. Cereal grains, oilseeds & pulses, vegetables 171 & fruits, roots & tubers, and other non-food crops are used for direct consumption and intermediate 172 use for monogastric livestock, ruminant livestock, compound feed, by-products (i.e., cereal bran, 173 alcoholic pulp, and oil cake), and other food production. By-products (i.e., cereal bran, alcoholic 174 pulp, and oil cake) and compound feed are produced for intermediate use for monogastric livestock 175 and ruminant livestock production. Monogastric livestock, ruminant livestock, fish, other food, and 176 non-food are used for direct consumption. Nitrogen fertiliser and phosphorus fertiliser are used for 177 cereal grains, oilseeds & pulses, vegetables & fruits, roots & tubers, and other non-food crops 178 production but not for consumption. We note C for consumption, XNET for net export (exports 179 minus imports), and Y for production. Variables with a bar stand for exogenous ones.

180

The balance equations for cereal grains, oilseeds & pulses, vegetables & fruits, roots & tubers, and
other non-food crops in region *i* are as follows:

$$\begin{array}{ll} 183 & C_{i,cer} + CER_{i,oap} + CER_{i,ctl} + CER_{i,cof} + CER_{i,bran} + CER_{i,pulp} + CER_{i,otf} + XNET_{i,cer} \leq \\ 184 & Y_{i,cer} & (p_{i,cer}) \\ 185 & (10) \end{array}$$

185 186

 $C_{i,osd} + OSD_{i,oap} + OSD_{i,ctl} + OSD_{i,cof} + OSD_{i,cake} + OSD_{i,otf} + XNET_{i,osd} \le Y_{i,osd}$ $(p_{i,osd})$

187 188

189 190

$$C_{i,vf} + VF_{i,oap} + VF_{i,ctl} + VF_{i,cof} + VF_{i,otf} + XNET_{i,vf} \le Y_{i,vf} \qquad (p_{i,vf})$$

$$(12)$$

$$C_{i,rt} + RT_{i,oap} + RT_{i,ctl} + RT_{i,cof} + RT_{i,otf} + XNET_{i,rt} \le Y_{i,rt} \qquad (p_{i,rt})$$
(13)

194

196

191

$$(14)$$

$$C_{i,ocr} + OCR_{i,oap} + OCR_{i,ctl} + OCR_{i,cof} + OCR_{i,otf} + XNET_{i,vf} \le Y_{i,ocr} \qquad (p_{i,ocr})$$

$$(15)$$

197 where $CER_{i,oap}$, $CER_{i,ctl}$, $CER_{i,cof}$, $CER_{i,bran}$, $CER_{i,pulp}$, and $CER_{i,otf}$ are cereals used for 198 monogastric livestock, ruminant livestock, compound feed, cereal bran, alcoholic pulp, and other 199 food production in region *i*, respectively. $OSD_{i,oap}$, $OSD_{i,ctl}$, $OSD_{i,cof}$, $OSD_{i,bran}$, and $OSD_{i,otf}$ 200 are cereals used for monogastric livestock, ruminant livestock, compound feed, oil cake, and other 201 food production in region *i*, respectively. $VF_{i,oap}$, $VF_{i,ctl}$, $VF_{i,cof}$, and $VF_{i,otf}$ are vegetables & 202 fruits used for monogastric livestock, ruminant livestock, compound feed, and other food production

 $C_{i,sgr} + SGR_{i,oap} + SGR_{i,ctl} + SGR_{i,cof} + SGR_{i,otf} + XNET_{i,sgr} \le Y_{i,sgr}$

203 in region *i*, respectively. $RT_{i,oap}$, $RT_{i,ctl}$, $RT_{i,cof}$, and $RT_{i,otf}$ are roots & tubers used for 204 monogastric livestock, ruminant livestock, compound feed, and other food production in region i, 205 respectively. $SGR_{i,oap}$, $SGR_{i,ctl}$, $SGR_{i,cof}$, and $SGR_{i,otf}$ are sugar crops used for monogastric 206 livestock, ruminant livestock, compound feed, and other food production in region *i*, respectively. 207 $OCR_{i,oap}$, $OCR_{i,ctl}$, $OTC_{i,cof}$, and $OTC_{i,otf}$ are other non-food crops used for monogastric 208 livestock, ruminant livestock, compound feed, and other food production in region *i*, respectively. 209 $p_{i,cer}$, $p_{i,osd}$, $p_{i,vf}$, $p_{i,rt}$, $p_{i,sgr}$, and $p_{i,ocr}$ are the shadow prices of cereal grains, oilseeds & 210 pulses, vegetables & fruits, roots & tubers, and other non-food crops in region *i*, respectively. 211 212 The balance equation for by-products (i.e., cereal bran, alcoholic pulp, and oil cake) in region i is 213 as follows: 214 $BRAN_{i,oap} + XNET_{i,bran} \leq Y_{i,bran}$ $(p_{i,bran})$ 215 (16) $(p_{i,pulp})$ $PULP_{i,oap} + XNET_{i,pulp} \leq Y_{i,pulp}$ 216 217 (17)218 219 $CAKE_{i,oap} + XNET_{i,cake} \leq Y_{i,cake}$ $(p_{i,cake})$ 220 (18)221 where $BRAN_{i,oap}$, $PULP_{i,oap}$, and $CAKE_{i,oap}$ are cereal bran, alcoholic pulp, and oil cake used for monogastric livestock production in region *i*, respectively. $p_{i,bran}$, $p_{i,pulp}$, and $p_{i,cake}$ are the 222 223 shadow prices of cereal bran, alcoholic pulp, and oil cake in region *i*. 224 The balance equation for compound feed in region i is as follows: 225 226 $COF_{i,oap} + COF_{i,ctl} + XNET_{i,cof} \leq Y_{i,cof}$ $(p_{i,cof})$ 227 (19)228 where $COF_{i,oap}$ and $COF_{i,ctl}$ are compound feed used in monogastric livestock and ruminant 229 livestock production in region *i*, respectively. $p_{i,cof}$ is the shadow price of compound feed in 230 region *i*. 231 232 The balance equation for monogastric livestock, ruminant livestock, fish, other food, and non-food 233 in region i is as follows: $C_{i,i} + XNET_{i,j} \leq Y_{i,j}$ $(p_{i,i})$ 234 235 (20)236 where $p_{i,j}$ is the shadow price of good j in region i. 237 238 The balance equation for nitrogen and phosphorus fertiliser in region i is as follows: 239 $NFE_{i.cer} + NFE_{i.osd} + NFE_{i.vf} + NFE_{i.rt} + NFE_{i.sar} + NFE_{i.ocr}$ $+XNET_{i,nfe} \leq Y_{i,nfe}$ $(p_{i,nfe})$ 240 (21) $PFE_{i,cer} + PFE_{i,osd} + PFE_{i,vf} + PFE_{i,rt} + PFE_{i,sgr} + PFE_{i,ocr}$ 241 $+XNET_{i,pfe} \leq Y_{i,pfe}$ $(p_{i,pfe})$ 242 (22)243 where NFE_{i.cer}, NFE_{i.osd}, NFE_{i.vf}, NFE_{i.rt}, NFE_{i.sar} and NFE_{i.ocr} are the nitrogen fertiliser 244 used for cereal grains, oilseeds & pulses, vegetables & fruits, roots & tubers, and other non-food 245 246 crops production in region *i*, respectively. $PFE_{i,cer}$, $PFE_{i,osd}$, $PFE_{i,vf}$, $PFE_{i,rt}$, $PFE_{i,sqr}$ and

 $PFE_{i,ocr}$ are the phosphorus fertiliser used for cereal grains, oilseeds & pulses, vegetables & fruits, 247 248 roots & tubers, and other non-food crops production in region *i*, respectively. $p_{i,nfe}$ and $p_{i,pfe}$ 249 are the shadow prices of nitrogen fertiliser and phosphorus fertiliser in region *i*, respectively. 250 251 For trade balance of all goods: 252 $\sum_{i} XNET_{i,i} = 0 \qquad (p_i)$ (23)253 254 In the applied model, we assume that factor endowments (i.e., capital, labour, cropland, and pasture 255 land) are mobile between different sectors but immobile among the two regions. For the balance 256 equations of production factor inputs: $\sum_{j} KL_{i,j} \leq \overline{KL_i}$ 257 (24) (r_i) $\sum_{j} LB_{i,j} \leq \overline{LB_{i}}$ $\sum_{j} LD1_{i,j} \leq \overline{LD1_{i}}$ (w_i) 258 (25)259 $(k1_i)$ 260 for sector j = cereal grains, oilseeds & pulses, vegetables & fruits, roots & tubers, and other non-261 food crops 262 (26) $\sum_{j} LD2_{i,j} \leq \overline{LD2_i} \qquad (k2_i)$ 263 for sector j = ruminant livestock 264 265 (27)266 where $\overline{KL_i}$, $\overline{LB_i}$, $\overline{LD1_i}$ and $\overline{LD2_i}$ are the factor endowments (i.e., capital, labour, cropland, 267 268 pasture land) supply in region i, respectively. r_i , w_i , $k1_i$, and $k2_i$ are the shadow prices of 269 capital, labour, cropland, and pasture land in region *i*, respectively. 270 271 If an emission permit system is implemented to control the total emissions of GHGs, acidification 272 and eutrophication pollutants from all producers, then the following relationship holds: $\sum_{j} EMG_{i,j}^{+} \leq \overline{TMG_{i}^{+}} \qquad (p_{eg,i})$ 273 (28) $\sum_{j} EMA_{i,j}^{+} \le \overline{TMA_{i}^{+}} \qquad (p_{ea,i})$ 274 (29) $\sum_{i} EME_{i,i}^{+} \leq \overline{TME_{i}^{+}} \qquad (p_{ee,i})$ 275 (30)where TMG_i^+ , TMA_i^+ , and TME_i^+ are the total emissions of GHGs, acidification and 276 eutrophication pollutants from all producers in region *i*, respectively. $\overline{TMG_i^+}$, $\overline{TMA_i^+}$, and 277 $\overline{TME_i^+}$ are the permitted level of the total emissions of GHGs, acidification and eutrophication 278 279 pollutants in region i, respectively. Emissions should not be above a certain level for the 280 regeneration of the environment. For benchmarking, the permitted emission level is the total 281 emission level in the base year. For an environmental policy study, the permitted emission level can 282 be an exogenous emission permit determined by the ecological limit. $p_{eq,i}$, $p_{eq,i}$, and $p_{ee,i}$ are the 283 shadow prices of the emissions of GHGs, acidification and eutrophication pollutants in region i, 284 respectively. 285 8

286 Monogastric livestock's total demand for food waste recycling service must be equal to or less than 287 the total supply of food waste recycling service, then the following relationship holds:

$$288 \qquad CERW_{i,oap} \le CERW_{i,oap} \qquad (p_{i,cerw1}) \qquad (31)$$

$$289 \qquad OSDW_{i,oap} \le \overline{OSDW_{i,oap}} \qquad (p_{i,osdw1}) \qquad (32)$$

290
$$VFW_{i,oap} \le \overline{VFW_{i,oap}}$$
 $(p_{i,vfw1})$ (33)

291
$$RTW_{i,oap} \leq RTW_{i,oap} \qquad (p_{i,rtw1}) \tag{34}$$

$$292 BRANW_{i,oap} \leq BRANW_{i,oap} (p_{i,branw1})$$

$$293 PULPW_{i,oap} \leq \overline{PULPW_{i,oap}} (p_{i,pulpw1})$$

$$(35) (35) (35)$$

294

where $\overline{CERW_{i,oap}}$, $\overline{OSDW_{i,oap}}$, $\overline{VFW_{i,oap}}$, $\overline{RTW_{i,oap}}$, $(p_{i,cakew1})$, $\overline{PULPW_{i,oap}}$, (37) and 295 CAKEWi.oan are the total supply of food waste (i.e., cereal grains waste, oilseeds & pulses waste, 296 297 vegetables & fruits waste, roots & tubers waste, cereal bran waste, alcoholic pup waste, and oil cake 298 waste) recycling service. $p_{i,cerw1}$, $p_{i,osdw1}$, $p_{i,vfw1}$, $p_{i,rtw1}$, $p_{i,branw1}$, $p_{i,pulpw1}$, and $p_{i,cakew1}$ 299 are the shadow prices of food waste (i.e., cereal grains waste, oilseeds & pulses waste, vegetables 300 & fruits waste, roots & tubers waste, cereal bran waste, alcoholic pup waste, and oil cake waste) 301 recycling service.

303 Consumer's total demand for food waste collection service must be equal to or less than the total 304 supply of food waste collection service, then the following relationship holds:

$$C_{i,vfw} \leq \overline{C_{i,vfw}} \qquad (p_{i,vfw2}) \qquad (40)$$

$$C_{i,rtw} \leq \overline{C_{i,rtw}} \qquad (p_{i,rtw2}) \tag{41}$$

$$C_{i,branw} \leq C_{i,branw} \qquad (p_{i,branw2}) \qquad (42)$$

$$310 \qquad C_{i,mulnw} \leq \overline{C_{i,mulnw2}} \qquad (p_{i,mulnw2}) \qquad (43)$$

$$C_{i,cakew} \leq \overline{C_{i,cakew}} \qquad (p_{i,pulpw2}) \qquad (13)$$

where C_{i,cerw}, C_{i,osdw}, C_{i,vfw}, C_{i,rtw}, C_{i,branw}, C_{i,pulpw}, and C_{i,cakew} are the total supply of 312 313 food waste (i.e., cereal grains waste, oilseeds & pulses waste, vegetables & fruits waste, roots & tubers waste, cereal bran waste, alcoholic pup waste, and oil cake waste) collection service. $p_{i,cerw2}$, 314 315 $p_{i,osdw2}$, $p_{i,vfw2}$, $p_{i,rtw2}$, $p_{i,branw2}$, $p_{i,pulpw2}$, and $p_{i,cakew2}$ are the shadow prices of food waste 316 (i.e., cereal grains waste, oilseeds & pulses waste, vegetables & fruits waste, roots & tubers waste, 317 cereal bran waste, alcoholic pup waste, and oil cake waste) collection service.

318

302

319 **Budget** constraint

320 The budget constraint for a consumer i holds such that the expenditure must be equal to the income:

321 $\sum_{s} (p_{i,s}C_{i,s}) + \sum_{i} (p_{i}XNET_{i,i}) + p_{i,cerw2}C_{i,cerw} + p_{i,osdw2}C_{i,osdw} + p_{i,vfw2}C_{i,vfw} + p_{i,vfw2}C_{i,vfw2}C_{i,vfw} + p_{i,vfw2}C_{i,vfw2}C$ 322 $p_{i,rtw2}C_{i,rtw} + p_{i,branw2}C_{i,branw} + p_{i,pulpw2}C_{i,pulpw} + p_{i,cakew2}C_{i,cakew} = h_i$ (45)323 where consumption goods *s* refers to cereal grains, oilseeds & pulses, vegetables & fruits, roots 324 & tubers, sugar crops, other non-food crops, monogastric livestock, ruminant livestock, other food, fish, and non-food. $\sum_{s} (p_{i,s} C_{i,s})$ is the total expenditure on the consumption goods in region *i*. 325 326 $p_{i,cerw2}C_{i,cerw}$, $p_{i,osdw2}C_{i,osdw}$, $p_{i,vfw2}C_{i,vfw}$, $p_{i,rtw2}C_{i,rtw}$, $p_{i,branw2}C_{i,branw}$, 327 $p_{i,pulpw2}C_{i,pulpw}$, and $p_{i,cakew2}C_{i,cakew}$ are the payments to the food waste (i.e., cereal grains waste, 328 oilseeds & pulses waste, vegetables & fruits waste, roots & tubers waste, cereal bran waste, alcoholic 329 pup waste, and oil cake waste) collection service in region *i*. The Negishi weight (α_i) in the welfare

function (equation 1) will be chosen such that the budget constraints hold for each representative consumer in region i.

332

Consumer's income is the sum of the remuneration of initial endowments employed in production
and payments to the food waste collection service sector. Since goods are tradable, the consumer's
income should exclude the export part. Thus, the consumer's income is:

- 336 $h_i = r_i \overline{KL_i} + w_i \overline{LB_i} + k1_i \overline{LD1_i} + k2_i \overline{LD2_i} \sum_j (p_j XNET_{i,j}) + p_{i,cerw1} CERW_{i,oap} + k1_i \overline{LD1_i} + k2_i \overline{LD2_i} \sum_j (p_j XNET_{i,j}) + p_{i,cerw1} CERW_{i,oap} + k1_i \overline{LD1_i} + k2_i \overline{LD2_i} \sum_j (p_j XNET_{i,j}) + p_{i,cerw1} CERW_{i,oap} + k1_i \overline{LD1_i} + k2_i \overline{LD2_i} \sum_j (p_j XNET_{i,j}) + p_{i,cerw1} CERW_{i,oap} + k1_i \overline{LD1_i} + k2_i \overline{LD2_i} \sum_j (p_j XNET_{i,j}) + p_{i,cerw1} CERW_{i,oap} + k1_i \overline{LD1_i} + k2_i \overline{LD2_i} \sum_j (p_j XNET_{i,j}) + p_{i,cerw1} CERW_{i,oap} + k1_i \overline{LD1_i} + k2_i \overline{LD2_i} \sum_j (p_j XNET_{i,j}) + p_{i,cerw1} CERW_{i,oap} + k1_i \overline{LD1_i} + k2_i \overline{LD2_i} \sum_j (p_j XNET_{i,j}) + p_{i,cerw1} CERW_{i,oap} + k1_i \overline{LD1_i} + k2_i \overline{LD2_i} \sum_j (p_j XNET_{i,j}) + p_{i,cerw1} CERW_{i,oap} + k1_i \overline{LD1_i} + k2_i \overline{LD2_i} \sum_j (p_j XNET_{i,j}) + p_{i,cerw1} CERW_{i,oap} + k1_i \overline{LD1_i} + k2_i \overline{LD2_i} \sum_j (p_j XNET_{i,j}) + p_i \overline{LD1_i} + k2_i \overline{LD2_i} \sum_j (p_j XNET_{i,j}) + p_i \overline{LD1_i} + k2_i \overline$
- 337 $p_{i,osdw1}OSDW_{i,oap} + p_{i,vfw1}VFW_{i,oap} + p_{i,rtw1}RTW_{i,oap} + p_{i,branw1}BRANW_{i,oap} +$
- 338 $p_{i,pulpw1}PULPW_{i,oap} + p_{i,cakew1}CAKEW_{i,oap} + p_{i,cerw2}C_{i,cerw} + p_{i,osdw2}C_{i,osdw} +$
- $p_{i,vfw2}C_{i,vfw} + p_{i,rtw2}C_{i,rtw} + p_{i,branw2}C_{i,branw} + p_{i,pulpw2}C_{i,pulpw} + p_{i,cakew2}C_{i,cakew}$ 340

341 where $\sum_{j}(p_{j}XNET_{i,j})$ is the income from exports. $p_{i,cerw1}CERW_{i,oap}$, $p_{i,osdw1}OSDW_{i,oap}$, $p_{i,vfw1}VFW_{i,oap}$, $p_{i,rtw1}RTW_{i,oap}$, $p_{i,branw1}BRANW_{i,oap}$, $p_{i,pulpw1}PULPW_{i,oap}$, and $p_{i,cakew1}CAKEW_{i,oap}$ are the income from food waste recycling service in region *i*. $p_{i,cerw2}C_{i,cerw}$, $p_{i,osdw2}C_{i,osdw}$, $p_{i,vfw2}C_{i,vfw}$, $p_{i,rtw2}C_{i,rtw}$, $p_{i,branw2}C_{i,branw}$, $p_{i,pulpw2}C_{i,pulpw}$, and $p_{i,cakew2}C_{i,cakew}$ are the income from food waste collection service in 346 region *i*.

(46)

347

348 The producers' profits are specified as follows:

$$\begin{array}{ll} 349 & PROF_{i,j} = p_jY_{i,j} - r_iKL_{i,j} - w_iLB_{i,j} - k1_iLD1_{i,j} - k2_iLD2_{i,j} - p_{cer}CER_{i,j} - p_{osd}OSD_{i,j} - \\ 350 & p_{vf}VF_{i,j} - p_{rt}RT_{i,j} - p_{sgr}SGR_{i,j} - p_{ocr}OCR_{i,j} - p_{cof}COF_{i,j} - p_{bran}BRAN_{i,j} - p_{pulp}PULP_{i,j} - \\ 351 & p_{cake}CAKE_{i,j} - p_{nfe}NFE_{i,j} - p_{pfe}PFE_{i,j} - p_{i,cerw1}CERW_{i,oap} - p_{i,osdw1}OSDW_{i,oap} - \\ 352 & p_{i,vfw1}VFW_{i,oap} - p_{i,rtw1}RTW_{i,oap} - p_{i,branw1}BRANW_{i,oap} - p_{i,pulpw1}PULPW_{i,oap} - \\ 353 & p_{i,cakew1}CAKEW_{i,oap} \end{array}$$

355

356 Model calibration

As in the literature on AGE models, we followed the Harberger convention ⁴ to calibrate the model 357 using the base year SAMs. It means that the prices of all goods and factors are set to one, and the 358 359 quantities of consumption and production goods equal the monetary value of the base year SAMs⁵. We calibrate the parameters in production and utility functions based on the cost shares of inputs in 360 361 total production output and expenditure shares of consumption goods in total expenditure. In order 362 to calibrate food waste-related parameters and add food waste (i.e., cereal grains waste, oilseeds & 363 pulses waste, vegetables & fruits waste, roots & tubers waste, cereal bran waste, alcoholic pup waste, and oil cake waste) into the SAMs (see Supplementary Tables 10-11), our model treats food waste 364 recycling service as feed input for monogastric livestock production (see equation (3)), and assumes 365 366 that consumer buys food waste collection service for consumption (see equation (45)).

367 Supplementary Figures

368

370 Supplementary Fig. 1 | Percentage shares (%) for each feed type of changes in feed in (a) dry matter, (b) protein, and (c) energy within total feed use for per kg of 371 monogastric livestock production in scenarios.

373 Supplementary Fig. 2 | Total feed demand (Tg) by livestock sectors in China in scenarios.

374

375 Supplementary Fig. 3 | Percentage changes (%) in prices of factor inputs in China (CN) and China's

376 main food and feed trading partners (MTP) in scenarios with respect to S0.

378 Supplementary Fig. 4 | (a) Percentage shares (%) for each crop of changes in total cropland 379 occupation in scenarios. (b) Absolute changes (Tg) in total fertiliser demand by crops in China in

380 scenarios with respect to S0.

Supplementary Fig. 5 | Absolute changes (Tg) in China's imports of (a) monogastric livestock, (b)
ruminant livestock, (c) cereal grains, (d) oilseeds &pulses, (e) other non-food crops, (f) vegetables
& fruits, (g) roots & tubers, and (h) sugar crops. The lengths of orange bars indicate the absolute
change in each scenario compared with the previous scenario. The length of the final bar is the value
for S2.

388 Supplementary Fig. 6 | Shares (%) of value-added by sector in Chinese GDP in scenarios.

Cereal grains = Oilseeds & pulses = Vegetables & fruits = Roots & tubers = Sugar crops = Monogastric livestock = Ruminant livestock = Fish

389

390 Supplementary Fig. 7 | Calorie availability per capita per day by food types in China and China's main food and feed trading partners (MTP) in S0.

392 Supplementary Fig. 8 | Decomposition of household income in China and China's main food and

393 feed trading partners (MTP) in S0.

Supplementary Fig. 9 | Percentage changes (%) in (a) per capita affordability of the current diet, (b)
household welfare, (c) wage, and (d) the average price of the current diet in China (CN) and China's

397 main food and feed trading partners (MTP) in scenarios with respect to S0.

399 Supplementary Fig. 10 | Percentage changes (%) in prices by sectors in scenarios with respect to S0.

400 Supplementary Tables

401

402	Supplementary Table 1 Physical quantities (Tg) for each product or service in China (CN) and its
403	main food and feed trading partners (MTP) in S0.

	CN	MTP
Cereal grains ^a	521.33	595.93
Oilseeds & pulses ^a	74.04	255.65
Vegetables & fruits ^a	572.24	116.39
Roots & tubers ^a	133.14	54.76
Sugar crops ^a	133.61	792.67
Other non-food crops ^a	24.98	19.27
Monogastric livestock ^a	103.15	18.65
Ruminant livestock ^a	52.53	46.28
Fish ^b	12.51	0.66
Compound feed ^c	128.00	103.10
Cereal bran ^d	11.37	12.01
Alcoholic pulp ^d	3.41	76.09
Oil cake ^d	58.06	84.02
Grass ^e	286.22	0.00
Nitrogen fertiliser ^a	39.60	13.65
Phosphorous fertiliser ^a	17.43	3.13

^a Physical quantities of cereal grains, oilseeds &pulses, vegetables &fruits, roots &tubers, sugar
crops, other non-food crops, monogastric livestock, ruminant livestock, nitrogen fertiliser, and
phosphorous fertiliser were obtained from FAO ⁶. Here physical quantities of cereal grains waste,
oilseeds &pulses waste, vegetables &fruits waste, and roots &tubers waste were excluded and
presented in Table A3.

 $\frac{1}{6}$ Fish production data was derived from FAO⁷.

410 ^c Compound feed production data was calculated according to the weighted averages of feeding
 411 crops included in the compound feed at the national level.

412 ^d Physical quantities of cereal bran, alcoholic pulp, and oil cake were estimated from the 413 consumption of corresponding food products and specific technical conversion factors ⁸. Here, 414 physical quantities of cereal bran, alcoholic pulp, and oil cake only include quantities recycled as 415 feed for monogastric livestock, and quantities collected as waste for landfill and incineration are

416 excluded and presented in Table A3.

^e Grass from natural grassland was derived from Miao and Zhang ⁹. Here, grass refers to grass from

418 natural grassland where ruminant livestock is grazing for feed, and grass from remaining grassland

419 is not included. We do not present grass production data in MTP due to data unavailability.

	Total (Tg)	Used as feed (%)	Unused biomass (%) ^c
Cereals waste	36.09	39% ^a	Landfill (40%) & incineration (21%)
Vegetables & fruits waste	175.01	39% ^a	Landfill (40%) & incineration (21%)
Roots & tubers waste	13.32	39% ^a	Landfill (40%) & incineration (21%)
Oil seeds & pulses waste	1.27	39% ^a	Landfill (40%) & incineration (21%)
Cereal bran	31.34	36% ^b	Landfill (42%) & incineration (22%)
Alcoholic pulp	42.34	16% ^b	Landfill (55%) & incineration (29%)
Oil cake	84.66	72% ^b	Landfill (18%) & incineration (10%)

420	Supplementary Table 2	Physical quantities (T	g) of food waste and food	processing by-products and	d their utilisation in the baseline (S	S0) for China.
-----	-----------------------	------------------------	---------------------------	----------------------------	--	----------------

421 ^a In China, quantitative empirical data on food waste recycled as feed for monogastric livestock was not available. We infer that the practices of feeding food waste to

422 monogastric livestock in Japan and South Korea are rather similar to those in China, following Fang, et al. ¹⁰. Thus, we assumed that a similar proportion (39%, the 423 mean of values in Japan and South Korea ¹¹) of food waste was being used as feed in China in 2014 in S0.

^b The utilisation rates of by-products recycled as feed in China in 2014 in S0 were based on Fang, et al. ¹⁰.

425 ^c The current whereabouts of unused biomass were based on Kaza, et al. ¹².

426 Supplementary Table 3 | Physical quantities (Tg) of food waste and by-product waste to food waste 427 recycling service and food waste collection service in China in S0.

		Physical qu	uantity (Tg)
	Total (Tg)	Food waste recycling service ^a	Food waste collection service ^a
Cereal grains waste ^b	36.09	14.08	22.02
Vegetables & fruits waste ^b	175.01	67.76	107.25
Roots & tubers waste ^b	13.32	5.20	8.13
Oilseeds & pulses waste ^b	1.27	0.50	0.78
Cereal bran waste ^c	19.97	0.00	19.97
Alcoholic pulp waste ^c	38.94	0.00	38.94
Oil cake waste ^c	26.59	0.00	26.59
Total	311.19	87.53	223.66

^a Physical quantities of food waste recycling service and food waste collection service refer to how
 much food waste is recycled as feed for monogastric livestock production and how much food waste
 is collected for landfill and incineration.

431 ^bPhysical quantities of food waste (i.e., cereal grains waste, vegetables & fruits waste, roots & tubers

432 waste, and oilseeds & pulses waste) were quantified separately for each type of food product using 433 data on food consumption and China-specific food loss and waste fractions ¹³ following the FAO

methodology ¹⁴. In China, quantitative empirical data on food waste used as feed for monogastric
 livestock was not available. We infer that the practices of feeding food waste to monogastric

436 livestock in Japan and South Korea are rather similar to those in China, following Fang, et al. ¹⁰.

Thus, we assumed that a similar proportion (39%, the mean of values in Japan and South Korea¹¹) of food waste was being used as feed in China in 2014 in S0, and the remaining food waste was

439 collected for landfill and incineration.

^c Physical quantities of by-product waste (i.e., cereal bran waste, alcoholic pulp waste, and oil cake
 waste) collected for landfill and incineration were estimated by detracting physical quantities of by products recycled as feed for monogastric livestock (36%, 16%, 72% of total physical quantities of

443 by-products according to Fang, et al. ¹⁰) from total physical quantities of by-products.

Supplementary Table 4 | Prices of food waste recycling service and food waste collection service in
 China. ^a

	Food waste	Price ^b	Weighted price ^c
Food waste	Recycling waste as	54	<u>54</u>
recycling service Food waste	feed Collection	40	
collection service	Landfill	31	82
	Incineration	64	

^a Food waste recycling service refers to recycling food waste as feed for monogastric livestock
 production, and food waste collection service means collecting food waste for landfill and
 incineration.

449 ^b The process of recycling food waste involves sorting, shredding, thermal treatment, fermentation, hydrolvsis, and extrusion to create animal feed, as outlined by Alsaleh and Aleisa¹⁵. Excluding the 450 451 food waste recycled as feed, 66% of the remaining food waste in China in 2014 was collected for 452 landfill, while 34% was incinerated, according to Kaza, et al.¹² and Bhada-Tata and Hoornweg¹⁶. 453 Collection includes pick up, transfer, and transport to final disposal site for food waste. By 454 multiplying the quantity of food waste with the price of food waste treatment, we can calculate the value of food waste generation. The prices of food waste recycling service and food waste collection 455 456 service are obtained from Alsaleh and Aleisa¹⁵, Kaza, et al.¹² and Bhada-Tata and Hoornweg¹⁶. 457 Since the value of food waste generation needs to be taken from the 'wtr' demand of consumers and 458 monogastric producers, we further checked whether or not the value of food waste generation is 459 more than 80% of the initial demand of "wtr". If it is higher than 80% of the 'wtr' demand, the value 460 of food waste generation is scaled down.

461 ^c The weighted price of food waste collection service = collection price (40 /t) + 66% *landfill price (31 /t)+34% *incineration price (64 /t)=82 /t.

	Main and by-products	By-product group	Economic share (%)	Mass share (%)
Cereal flour production ^a	Cereal flour	-	93%	86%
	Cereal bran	Cereal bran	7%	14%
Maize ethanol production ^b	Maize ethanol	-	83%	49%
	Distillers' grain from maize ethanol	Alcoholic pulp	17%	51%
Barley beer production ^b	Barley beer	-	98%	82%
	Brewers' grain from barley beer	Alcoholic pulp	2%	18%
Liquor production ^b	Liquor	-	97%	25%
	Distillers' grain from liquor	Alcoholic pulp	3%	75%
Vegetable oil production ^c	Soybean oil	-	44%	23%
	Soybean oil cake	Oil cake	56%	77%
	Other oil	-	66%	43%
	Other oil cake	Oil cake	34%	57%

463	Supplementary Tab	le 5 T	he economic and	mass allocation	of mair	and by-pr	oducts. ^a
-----	-------------------	----------	-----------------	-----------------	---------	-----------	----------------------

^a Data source: Haque, et al. ¹⁷, Mackenzie, et al. ¹⁸, Nyhan, et al. ¹⁹, and Pourmehdi and Kheiralipour ²⁰

465 Supplementary Table 6 | Food availability (kcal capita⁻¹ day⁻¹) and the additional number of 466 population (million people) to be fed as the current diet in China (CN) and China's main food and 467 feed trading partners (MTP) in scenarios.

		Food availability	Additional number of people to be fed as the
		(kcal capita ⁻¹ day ⁻¹)	current diet (million people)
S 0	CN	3241.0	0
	MTP	3319.3	0
S 1	CN	3247.1	2.6
	MTP	3318.8	-0.1
S2	CN	3253.1	5.2
	MTP	3318.4	-0.2

	Dry matte	er (DM, %)	Crude prot	tein (CP, %)	Energy (N	/J kg DM ⁻¹)
	CN	MTP	CN	MTP	CN	MTP
Cereal grains	89	89	11	10	18.25	18.82
Oilseeds &pulses	74	86	22	32	19.72	19.78
Vegetables & fruits	10	10	19	19	13.80	13.80
Roots & tubers	29	29	5	5	21.54	21.54
Sugar crops	69	69	16	16	19.68	19.68
Compound feed	48	70	34	23	18.61	19.36
Cereal bran	89	89	16	16	12.24	12.24
Alcoholic pulp	75	75	27	27	12.84	12.84
Oil cake	89	89	46	47	14.69	14.94
Grass	27	27	12	12	11.20	11.20
Cereal grains waste	87	-	10	-	14.25	-
Vegetables & fruits waste	10	-	17	-	10.45	-
Roots & tubers waste	26	-	8	-	12.15	-
Oilseeds & pulses waste	94	-	15	-	14.70	-
Cereal bran waste	89	-	16	-	12.24	-
Alcoholic pulp waste Oil cake waste	75 89	-	27 46	-	12.84 14.69	-

469 Supplementary Table 7 | Estimated mean dry matter (DM, %), crude protein (CP, %), and energy (MJ kg DM⁻)contents of feed sub-groups in China (CN) and its main 470 food and feed trading partners (MTP). ^a

⁴⁷¹ ^a The values were weighted averages of feed types included in the groups at the national level. Data were sourced from the NUFER database ²¹, MITERRA-EUROPE

472 database ²², NRC ²³, NRC ²⁴, NRC ²⁵, NRC ²⁶, and China Feed–database Information Network Centre((<u>http://www.chinafeeddata.org.cn/</u>).

Feed demand	Ν	Ionogastric livestock (Tg	g)	Run	ninant livestock	(Tg)
	S 0	S 1	S2	SO	S 1	S2
Cereal grains	77.66	79.18	76.05	24.51	24.47	24.50
Oilseeds & pulses	3.15	3.31	3.24	0.74	0.73	0.74
Vegetables & fruits	11.84	15.33	17.12	3.17	3.17	3.17
Roots & tubers	2.75	2.97	2.93	0.74	0.74	0.74
Sugar crops	0.78	0.77	0.72	2.13	2.13	2.13
Compound feed	106.45	129.83	139.33	17.63	17.59	17.62
Cereal bran	11.08	12.36	12.52	-	-	-
Alcoholic pulp	6.67	7.05	7.01	-	-	-
Oil cake	59.83	28.51	34.79	-	-	-
Cereal grains waste	14.08	19.49	36.09	-	-	-
Vegetables & fruits waste	67.76	93.82	175.01	-	-	-
Roots & tubers waste	5.20	7.19	13.32	-	-	-
Oilseeds and pulses waste	0.50	0.69	1.27	-	-	-
Cereal bran waste	-	19.97	19.97	-	-	-
Alcoholic pulp waste	-	38.94	38.94	-	-	-
Oil cake waste	-	26.59	26.59	-	-	-
Grass	-	-	-	286.22	286.22	286.22
Total (Tg)	368	486	605	335	335	335

473 Supplementary Table 8 | Physical quantities of feed demand (Tg) by livestock sectors in China in scenarios.

475 Supplementary Table 9 | Sectoral aggregation scheme.

Aggregated sectors	GTAP original sectors
Cereal grains	"Paddy rice (pdr)", "Processed rice (pcr)", "Wheat (wht)", and "Cereals grains nec (gro)" sectors
Oilseeds & pulses	"Oil seeds (osd)" sector, and pulses split from the original "Vegetables& fruits (v_f)" sector
Vegetables & fruits	"Vegetables, fruits, nuts (v_f)" sector after splitting out pulses, and roots & tubers
Roots & tubers	Split from the original "Vegetables& fruits (v_f)" sector
Sugar crops	"Sugar cane & Sugar beet (c_b)" and Sugar (sgr)" sectors
Other non-food crops	"Plant-based fibers (pfb)", and "Crops nec (ocr)" sectors
Monogastric livestock	"Animal products nec (oap)" and "Meat products nec (omt)" sectors
Ruminant livestock	"Cattle, sheep, goats, horses (ctl)", "Meat: cattle, sheep, goats, horses (cmt)", "Raw milk (rmk)", "Wool, silk-worm cocoons
	(wol)", and "Dairy products (mil)" sectors
Compound feed ^a	Split from the original "Food products nec (ofd)" sector
Cereal bran ^a	Split from the original "Food products nec (ofd)" sector
Alcoholic pulp ^a	Distiller's grains from maize ethanol production split from the original "Food products nec (ofd)" sector; Distiller's grains from
	liquor production and brewer's grains from barley beer production split from the original "Beverages and Tobacco products
	(b_t)" sector
Oil cake ^a	Split from the original "Vegetable oils and fats (vol)" sector
Other food ^a	"Food products nec (ofd)" sector after splitting out splitting out compound feed, cereal bran, and distiller's grains from maize
	ethanol production; "Beverages and Tobacco products (b_t)" sector after splitting out distiller's grains from liquor production
	and brewer's grains from barley beer production; Vegetable oils and fats (vol)" sector after splitting out oil cake
Nitrogen fertiliser ^b	Split from the original "Manufacture of chemicals and chemical products (chm)" sector
Phosphorous fertiliser ^b	Split from the original "Manufacture of chemicals and chemical products (chm)" sector
Food waste recycling service ^c	Split from the original "Waste and water (wtr)" sector
Food waste collection service ^c	Split from the original "Waste and water (wtr)" sector
Fish	"Fishing (Fsh)" sector

Aggregated sectors	GTAP original sectors
Non-food	"Manufacture of chemicals and chemical products (chm)" sector after splitting out nitrogen fertiliser and phosphorous fertiliser
	"Waste and water (wtr)" sector after splitting out food waste recycling service and food waste collection service; "Forestry (frs)"
	"Fishing (fsh)", "Coal (coa)", "Oil (oil)", "Gas (gas)", "Minerals nec (oxt)", "Petroleum, coal products (p_c)", "Electricity (ely)"
	"Gas manufacture, distribution (gdt)", "Textiles (tex)", "Wearing apparel (wap)", "Leather products (lea)", "Wood products
	(lum)", "Paper products, publishing (ppp)", "Manufacture of pharmaceuticals, medicinal chemical and botanical products (bph)"
	"Manufacture of rubber and plastics products (rpp)", "Mineral products nec (nmm)", "Ferrous metal (i_s)", "Metal nec (nfm)"
	"Metal products (fmp)", Electronic equipment (ele)", "Manufacture of electrical equipment (eeq)", "Manufacture of machinery
	and equipment n.e.c. (ome)", "Motor vehicles and parts (mvh)", "Transport equipment nec (otn)", "Manufactures nec (omf)"
	"Construction (cns)", "Wholesale and retail trade; repair of motor vehicles and motorcycles (trd)", "Accommodation, Food and
	service activities (afs)", "Land transport and transport via pipelines (otp)", "Warehousing and support activities (whs)", "Sea
	transport (wtp)", "Air transport (atp)", "Communication (cmn)", "Financial services nec (ofi)", "Insurance (ins)", "Real estate
	activities (rsa)", "Other Business Services nec (obs)", "Recreation & other services (ros)", "Other Services (Government) (osg)"
	"Education (edu)", "Human health and social work (hht)", "Dwellings: ownership of dwellings (imputed rents of houses occupied
	by owners) (dwe)" sectors

476 ^a Compound feed was split from the "Food products nec (ofd)" sector in the original GTAP database. The substance flow from "Food products nec (ofd)" to monogastric livestock and ruminant livestock was compound feed. Cereal bran and distiller's grains from maize ethanol production were taken from the newly-splitted 477 478 sector of compound feed according to the shares of economic values of cereal bran and distiller's grains from maize ethanol production in the total economic value of 479 compound feed. Economic values of cereal bran and distiller's grains from maize ethanol production were calculated by multiplying the physical quantity (in tons) and 480 the corresponding price (dollar per ton). Distiller's grains from liquor production and brewer's grains from barley beer production were split from the "Beverages and 481 Tobacco products (b t)" sector in the original GTAP database. The substance flow from "Beverages and Tobacco products (b t)" to monogastric livestock were distillers' grains from liquor production and brewers' grains from barley beer production. Oil cake was split from the "Vegetable oils and fats (vol)" sector in the original 482 GTAP database. The substance flow from the "Vegetable oils and fats (vol)" sector to monogastric livestock was oil cake. 483

^b The nitrogen and phosphorus fertilisers were taken from the original 'Manufacture of chemicals and chemical products' sector following the method of Sturm ²⁷ and Bartelings, et al. ²⁸.

486 ^c Food waste recycling service and food waste collection service were split from the "Waste and water ("wtr") sector in the original GTAP database according to the

487 shares of economic values of food waste recycling service and food waste collection service in the total economic value of "Waste and water ("wtr") sector. The

economic values of food waste recycling service and food waste collection service were calculated by multiplying the physical quantity (in tons) and the corresponding

489 price (dollar per ton). Since the value of food waste generation needs to be taken from the 'wtr' demand of consumers and mongastric producers, we further checked

490 whether or not the value of food waste generation is more than 80% of the initial demand of "wtr". If it is higher than 80% of the 'wtr' demand, the value of food waste generation are scaled down.

	ce	er	osd	vf	rt	sgr	ocr	oap	ctl	cof	bran	pulp	cake	otf	nfe	pfe	fsh	nf	CONS	XNET	TOT
cer	0		0	0	0	0	0	29229	9055	11363	1372	67	0	81831	0	0	0	0	61825	-2016	192727
osc	0	1	0	0	0	0	0	1002	230	8312	0	0	182	42993	0	0	0	0	5092	-34661	23150
vf	0	1	0	0	0	0	0	5685	1495	18959	0	0	0	98059	0	0	0	0	145756	-139	269815
rt	0	1	0	0	0	0	0	595	157	1986	0	0	0	10270	0	0	0	0	15265	-15	28259
sgr	0	1	0	0	0	0	0	192	515	1280	0	0	0	6619	0	0	0	0	24553	-903	32256
ocr	0	1	0	0	0	0	0	664	262	197	0	0	0	1021	0	0	0	0	1282	-1465	1963
oar	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	176874	-3205	173669
ctl	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	63546	-484	63062
cof	0	1	0	0	0	0	0	45882	7458	0	0	0	0	0	0	0	0	0	0	854	54194
bra	n 0	1	0	0	0	0	0	3371	0	0	0	0	0	0	0	0	0	0	0	27	3398
pul	p 0	1	0	0	0	0	0	800	0	0	0	0	0	0	0	0	0	0	0	-398	402
cak	e 0	1	0	0	0	0	0	215	0	0	0	0	0	0	0	0	0	0	0	-10	205
otf	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	432109	714	432823
nfe	73	396	521	3479	471	313	621	0	0	0	0	0	0	0	0	0	0	0	0	-78	12721
pfe	24	412	211	1542	169	83	163	0	0	0	0	0	0	0	0	0	0	0	0	-28	4551
fsh	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15571	2154	17725
nf	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2547713	352518	2900231
LA	D1 53	3323	7694	80962	8445	9849	396	0	0	0	0	0	0	0	0	0	0	0	-160670	0	0
LA	D2 0	1	0	0	0	0	0	0	10240	0	0	0	0	0	0	0	0	0	-10240	0	0
LA	B 94	4995	11819	148120	15450	17556	631	62255	24592	6707	959	155	8	89845	4413	1579	9208	1531587	-2019880	0	0
CA	.P 34	4602	2905	35711	3725	4455	151	23777	9057	5390	1067	180	15	102185	8308	2972	8517	1368643	-1611662	0	0
TR	A 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	312868	-312868	
ТО	т 19	92727	23150	269815	28259	32256	1963	173669	63062	54194	3398	402	205	432823	12721	4551	17725	2900231			

492 Supplementary Table 10 | The social accounting matrix in the base year of 2014 for China (million \$).^a

	cer	osd	vf	rt	sgr	ocr	oap	ctl	cof	bran	pulp	cake	otf	nfe	pfe	fsh	nf	CONS	XNET	TOT
cerw	0	0	0	0	0	0	754	0	0	0	0	0	0	0	0	0	0	1808		
vfw	0	0	0	0	0	0	3631	0	0	0	0	0	0	0	0	0	0	8806		
rtw	0	0	0	0	0	0	278	0	0	0	0	0	0	0	0	0	0	667		
osdw	0	0	0	0	0	0	27	0	0	0	0	0	0	0	0	0	0	64		
branw	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1639		
pulpw	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3197		
cakew	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2184		

^a Data source: GTAP ²⁹. cer=cereal grains. osd= oilseeds & pulses. vf=vegetables & fruits. rt= roots & tubers. sgr=sugar crops. ocr=other non-food crops.
 oap=monogastric livestock. ctl=ruminant livestock. cof=compound feed. bran=cereal bran. pulp=alcoholic pulp. cake=oil cake. otf=other food. nfe=nitrogen fertiliser.
 pfe=phosphorous fertiliser. fsh=fish. nf=non-food. CONS=consumption. XNET=net export. TOT=total. LAD1=cropland. LAD2=pasture land. LAB=labour.
 CAP=capital. TRA=trade. cerw=cereal grains waste. osdw= oilseeds & pulses waste. vfw=vegetables & fruits waste. rtw= roots & tubers waste. branw=cereal bran
 waste. pulpw=alcoholic pulp waste. cakew=oil cake waste.

		cer	osd	vf	rt	sgr	ocr	oap	ctl	cof	bran	pulp	cake	otf	nfe	pfe	fsh	nf	CONS	XNET	TOT
	cer	0	0	0	0	0	0	3794	34288	4450	1023	414	0	32927	0	0	0	0	16597	2016	95511
	osd	0	0	0	0	0	0	69	301	3307	0	0	2009	17059	0	0	0	0	1938	34661	59344
	vf	0	0	0	0	0	0	354	1110	8351	0	0	0	43966	0	0	0	0	50755	139	104675
	rt	0	0	0	0	0	0	37	116	875	0	0	0	4605	0	0	0	0	5316	15	10963
	sgr	0	0	0	0	0	0	58	1037	1598	0	0	0	7759	0	0	0	0	16038	903	27392
	ocr	0	0	0	0	0	0	130	413	943	0	0	0	4929	0	0	0	0	13124	1465	21003
	oap	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	97851	3205	101056
	ctl	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	214439	484	214923
	cof	0	0	0	0	0	0	30067	32726	0	0	0	0	0	0	0	0	0	0	-854	61939
	bran	0	0	0	0	0	0	4229	0	0	0	0	0	0	0	0	0	0	0	-27	4203
	pulp	0	0	0	0	0	0	4967	0	0	0	0	0	0	0	0	0	0	0	398	5365
	cake	0	0	0	0	0	0	2383	0	0	0	0	0	0	0	0	0	0	0	10	2393
	otf	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	514821	-714	514107
	nfe	2528	940	131	38	255	685	0	0	0	0	0	0	0	0	0	0	0	0	78	4655
	pfe	1547	1164	87	47	92	231	0	0	0	0	0	0	0	0	0	0	0	0	28	3195
	fsh	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6983	-2154	4828
	nf	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13043344	-352518	12690826
	LAD1	22886	13940	25013	2605	2260	5474	0	0	0	0	0	0	0	0	0	0	0	-72178	0	0
	LAD2	0	0	0	0	0	0	0	15132	0	0	0	0	0	0	0	0	0	-15132	0	0
	LAB	31115	17269	34446	3585	14182	5957	35369	71060	23869	1730	2795	231	203920	2038	1461	1581	8508850	-8959458	0	0
_	CAP	37435	26030	44998	4688	10603	8655	19600	58739	18547	1450	2155	153	198941	2618	1734	3247	4181976	-4621570	0	0
_	TRA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-312868	312868	
	ТОТ	95511	59344	104675	10963	27392	21003	101056	214923	61939	4203	5365	2393	514107	4655	3195	4828	12690826			

499 Supplementary Table 11 | The social accounting matrix in the base year of 2014 for China's main food and feed trading partners (MTP) (million \$).^a

	cer	osd	vf	rt	sgr	ocr	oap	ctl	cof	bran	pulp	cake	otf	nfe	pfe	fsh	nf	CONS	XNET	TOT
cerw	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
vfw	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
rtw	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
osdw	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
branw	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
pulpw	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
cakew	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

^a Data source: GTAP ²⁹. cer=cereal grains. osd= oilseeds & pulses. vf=vegetables & fruits. rt= roots & tubers. sgr=sugar crops. ocr=other non-food crops. oap=monogastric livestock. ctl=ruminant livestock. cof=compound feed. bran=cereal bran. pulp=alcoholic pulp. cake=oil cake. otf=other food. nfe=nitrogen fertiliser. pfe=phosphorous fertiliser. fsh=fish. nf=non-food. CONS=consumption. XNET=net export. TOT=total. LAD1=cropland. LAD2=pasture land. LAB=labour. CAP=capital. TRA=trade. cerw=cereal grains waste. osdw= oilseeds & pulses waste. vfw=vegetables & fruits waste. rtw= roots & tubers waste. branw=cereal bran waste. pulpw=alcoholic pulp waste. cakew=oil cake waste.

	CN	MTP
Cereal grains	276.61	118.98
Oilseeds &pulses	8.33	9.88
Vegetables & fruits	54.88	3.34
Roots & tubers	7.46	0.82
Sugar crops	4.58	6.33
Other crops	15.55	20.73
Monogastric livestock	79.37	63.77
Ruminant livestock	245.04	700.30
Compound feed	25.39	16.03
Cereal bran	0.00752	0.00288
Alcoholic pulp	0.0001148	0.0000318
Oil cake	0.01580	0.01422
Other food	204.54	130.82
Nitrogen fertiliser	324.09	80.29
Phosphrous fertiliser	24.53	9.06
Fish	0.00	0.00
Non-food	10238.21	6825.11
Food waste recycling service	16.37	0.00
Food waste collection service	221.98	0.00
Total	11746.93	7985.49

 $506 \qquad Supplementary \ Table \ 12 \ | \ Total \ emissions \ of \ greenhouse \ gases \ (Tg \ CO_2 \ equivalents) \ in \ China \ (CN)$

507 and its main food and feed trading partners (MTP).^a

^a Data source: Climate Analysis Indicators Tool (CAIT) ³⁰. Emissions related to N fertiliser production were allocated to the N fertiliser sector, while emissions related to N fertiliser application were distributed to the crop sectors. The data on N and P fertiliser use by crop types and countries were derived from Ludemann, et al. ³¹. Emissions of by-products (i.e., cereal bran, alcoholic pulp, oil cake) were derived from Mackenzie, et al. ¹⁸. Emissions of food waste recycling service and food waste collection service were obtained from Alsaleh and Aleisa ¹⁵, Hong, et al. ³², and Hong, et al. ³³

	CN	MTP
Cereal grains	3.94	0.94
Oilseeds & pulses	0.29	0.15
Vegetables & fruits	1.89	0.05
Roots &tubers	0.26	0.01
Sugar crops	0.16	0.09
Other crops	0.54	0.34
Monogastric livestock	5.22	2.88
Ruminant livestock	2.21	1.05
Compound feed	0.04	0.02
Cereal bran	0.000328	0.000126
Alcoholic pulp	0.00000067	0.00000019
Oil cake	0.00080	0.00073
Other food	0.35	0.16
Nitrogen fertiliser	0.0009	0.0035
Phosphrous fertiliser	0.0007	0.0029
Fish	0.00	0.00
Non-food	18.10	8.21
Food waste recycling service	0.06	0.00
Food waste collection service	0.56	0.00
Total	33.61	13.92

Supplementary Table 13 | Total emissions of acidification pollutants (Tg NH₃ equivalents) in China

^a Data source: Liu, et al. ³⁴, Huang, et al. ³⁵, and Dahiya, et al. ³⁶. Emissions of by-products (i.e., cereal bran, alcoholic pulp, oil cake) were derived from Mackenzie, et al. ¹⁸. Emissions of food

waste recycling service and food waste collection service were obtained from Alsaleh and Aleisa ¹⁵, Hong, et al. ³², and Hong, et al. ³³

	CN	MTP
Cereal grains	1.04	0.06
Oilseeds &pulses	0.15	0.05
Vegetables & fruits	0.88	0.04
Roots &tubers	0.12	0.01
Sugar crops	0.02	0.01
Other crops	0.01	0.01
Monogastric livestock	0.58	0.38
Ruminant livestock	1.63	2.02
Compound feed	0.17	0.07
Cereal bran	0.0000147	0.0000056
Alcoholic pulp	0.00000029	0.0000008
Oil cake	0.000037	0.000034
Other food	1.35	0.56
Nitrogen fertiliser	0.0002	0.0007
Phosphrous fertiliser	0.0002	0.0009
Fish	0.00	0.00
Non-food	3.66	2.40
Food waste recycling service	0.0303	0.0000
Food waste collection service	0.2790	0.0000
Total	9.92	5.61

Supplementary Table 14 | Total emissions of eutrophication pollutants (Tg N equivalents) in China

^a Data source: Hamilton, et al. ³⁷. Emissions of by-products (i.e., cereal bran, alcoholic pulp, oil cake) were derived from Mackenzie, et al. ¹⁸. Emissions of food waste recycling service and food waste collection service were obtained from Alsaleh and Aleisa ¹⁵, Hong, et al. ³², and Hong, et al. ³³

526 Supplementary References

- 527 1 Ginsburgh, V. & Keyzer, M. A. *The Structure of Applied General Equilibrium Models*.
 528 (The MIT Press, 2002).
- 2 Zhu, X. & Van Ierland, E. The enlargement of the European Union: Effects on trade and
 emissions of greenhouse gases. *Ecological Economics* 57, 1-14 (2006).
 https://doi.org/https://dx.doi.org/10.1016/j.ecolecon.2005.03.030
- Goedkoop, M. *et al.* ReCiPe 2008: A life cycle impact assessment method which comprises
 harmonised category indicators at the midpoint and the endpoint level. 1-126 (2009).
- 4 McLure Jr, C. E. General equilibrium incidence analysis: The Harberger model after ten
 years. *Journal of Public Economics* 4, 125-161 (1975).
- 536 5 Shoven, J. B. & Whalley, J. *Applying general equilibrium*. (Cambridge university press, 1992).
- 538 6 FAO. <<u>http://www.fao.org/faostat/en/#data</u>> (2022).
- 5397 FAO. Global fish production from 2002 to 2022 (in million metric tons),540<<u>https://www.statista.com/statistics/264577/total-world-fish-production-since-2002/</u>>
- 541 (2022).
- 542 8 FAO. Technical Conversion Factors for Agricultural Commodities. (1997).
- 543 9 Miao, D. & Zhang, Y. National grassland monitoring report. (2014).
- 10Fang, Q. *et al.* Low-opportunity-cost feed can reduce land-use-related environmental
 impacts by about one-third in China. *Nature Food* (2023). <u>https://doi.org/10.1038/s43016-</u>
 023-00813-x
- 547 11Zu Ermgassen, E. K., Phalan, B., Green, R. E. & Balmford, A. Reducing the land use of EU
 548 pork production: where there's swill, there's a way. *Food Policy* 58, 35-48 (2016).
 549 <u>https://doi.org/10.1016/j.foodpol.2015.11.001</u>
- 12Kaza, S., Yao, L., Bhada-Tata, P. & Van Woerden, F. *What a waste 2.0: a global snapshot*of solid waste management to 2050. (World Bank Publications, 2018).
- 13 Xue, L. *et al.* China's food loss and waste embodies increasing environmental impacts.
 Nature Food 2, 519-528 (2021). <u>https://doi.org/10.1038/s43016-021-00317-6</u>
- 14Gustafsson, J., Cederberg, C., Sonesson, U. & Emanuelsson, A. The methodology of the
 FAO study: Global Food Losses and Food Waste-extent, causes and prevention"-FAO, 2011.
 (SIK Institutet för livsmedel och bioteknik, 2013).
- 15 Alsaleh, A. & Aleisa, E. Triple Bottom-Line Evaluation of the Production of Animal Feed
 from Food Waste: A Life Cycle Assessment. *Waste and Biomass Valorization* 14, 11691195 (2023). https://doi.org/10.1007/s12649-022-01914-7
- 16Bhada-Tata, P. & Hoornweg, D. A. What a waste?: a global review of solid waste
 management. (World Bank Publications, 2012).
- 17 Haque, M. A., Liu, Z., Demilade, A. & Kumar, N. M. Assessing the Environmental Footprint
 of Distiller-Dried Grains with Soluble Diet as a Substitute for Standard
 Corn–Soybean for Swine Production in the United States of America. *Sustainability*14, 1161 (2022).
- 18 Mackenzie, S. G., Leinonen, I., Ferguson, N. & Kyriazakis, I. Towards a methodology to
 formulate sustainable diets for livestock: accounting for environmental impact in diet
 formulation. *British Journal of Nutrition* 115, 1860-1874 (2016).
 https://doi.org/10.1017/S0007114516000763

- 570 19Nyhan, L., Sahin, A. W., Schmitz, H. H., Siegel, J. B. & Arendt, E. K. Brewers' Spent Grain:
 571 An Unprecedented Opportunity to Develop Sustainable Plant-Based Nutrition Ingredients
- Addressing Global Malnutrition Challenges. *Journal of Agricultural and Food Chemistry* 71,
 10543-10564 (2023). https://doi.org/10.1021/acs.jafc.3c02489
- 574 20Pourmehdi, K. & Kheiralipour, K. Assessing the effects of wheat flour production on the 575 environment. *Advances in Environmental Technology* **6**, 111-117 (2020).
- 576 21 Ma, L. *et al.* Modeling nutrient flows in the food chain of China. *J Environ Qual* **39**, 1279 577 1289 (2010). https://doi.org/10.2134/jeq2009.0403
- 578 22Hou, Y. *et al.* Feed use and nitrogen excretion of livestock in EU-27. Agriculture,
 579 *Ecosystems* & *Environment* 218, 232-244 (2016).
 580 https://doi.org/10.1016/j.agee.2015.11.025
- 581 23NRC. Nutrient Requirements of Poultry. (National Academy Press, 1994).
- 582 24NRC. Nutrient Requirements of Swine. (National Academy Press, 1998).
- 583 25NRC. Nutrient Requirements of Beef Cattle. (National Academy Press, 2000).
- 584 26NRC. Requirements of Dairy Cattle. (National Academy Press, 2001).
- 585 27 Sturm, V. in *14th Annual Conference on Global Economic Analysis* (Global Trade
 586 Analysis Project, 2011).
- 28 Bartelings, H., Kavallari, A., van Meijl, H. & Von Lampe, M. in *19th Annual Conference on Global Economic Analysis* (Global Trade Analysis Project, 2016).
- 589 29GTAP. *GTAP version 10 Database*, <<u>http://www.gtap.agecon.purdue.edu/</u>>(2014).
- 30Climate Analysis Indicators Tool (CAIT). <<u>https://www.climatewatchdata.org/?source=cait</u>>
 (2014).
- 31Ludemann, C. I., Gruere, A., Heffer, P. & Dobermann, A. Global data on fertilizer use by
 crop and by country. *Scientific Data* 9, 501 (2022). <u>https://doi.org/10.1038/s41597-022-</u>
 01592-z
- 32Hong, J., Li, X. & Zhaojie, C. Life cycle assessment of four municipal solid waste
 management scenarios in China. *Waste Management* 30, 2362-2369 (2010).
 https://doi.org/https://doi.org/10.1016/j.wasman.2010.03.038
- 33 Hong, J. *et al.* Intensification of municipal solid waste disposal in China. *Renewable and Sustainable Energy Reviews* 69, 168-176 (2017).
 https://doi.org/https://doi.org/10.1016/j.rser.2016.11.185
- 34Liu, L. *et al.* Exploring global changes in agricultural ammonia emissions and their
 contribution to nitrogen deposition since 1980. *Proceedings of the National Academy of Sciences* 119, e2121998119 (2022). <u>https://doi.org/doi:10.1073/pnas.2121998119</u>
- 604 35 Huang, T. *et al.* Spatial and Temporal Trends in Global Emissions of Nitrogen Oxides from
- 605 1960 to 2014. Environmental Science & Technology **51**, 7992-8000 (2017). 606 https://doi.org/10.1021/acs.est.7b02235
- 36Dahiya, S. *et al.* Ranking the World's Sulfur Dioxide (SO2) Hotspots: 2019–2020. *Delhi Center for Research on Energy and Clean Air-Greenpeace India: Chennai, India* 48 (2020).
- 609 37 Hamilton, H. A. *et al.* Trade and the role of non-food commodities for global eutrophication.
- 610 *Nature Sustainability* **1**, 314-321 (2018).
- 611